

Emerging Lighting Technology

Bruce Kinzey
Pacific Northwest National Laboratory
FUPWG – Portland, OR
April 20, 2011

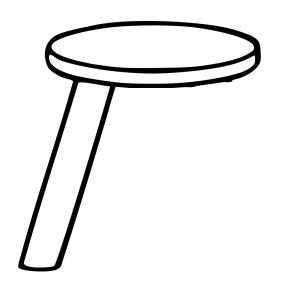
GATEWAY Demonstration Program

- Purpose: demonstrate new SSL products in real-world applications that save energy, match or improve illumination, and are costeffective
- Demos generate critical field experience providing:
 - Feedback to manufacturers
 - Data for utility incentives
 - Market readiness of specific applications to users
 - Advancement in lighting knowledge

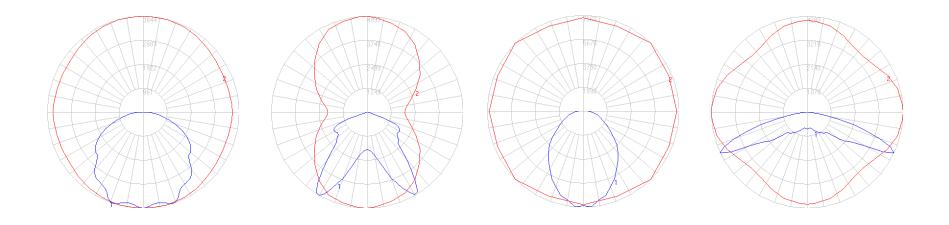
Central Park, NY

Photo: Ryan Pyle

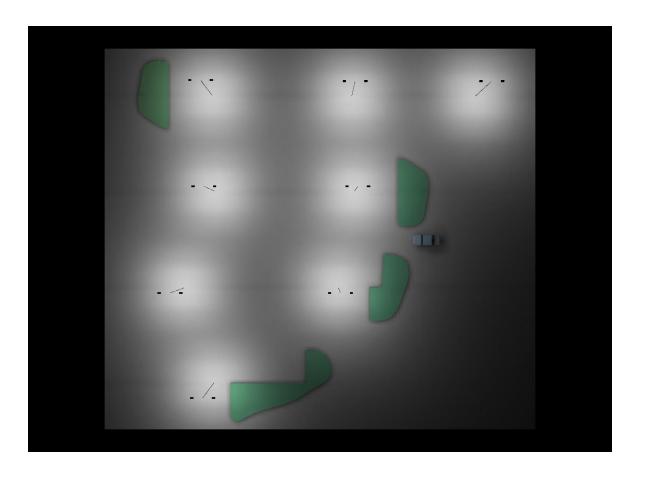
Smithsonian American Art Museum, Washington, D.C. Photo: Scott Rosenfeld

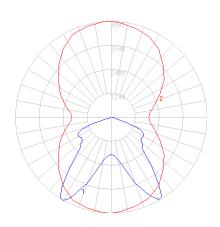

LED Product Explosion

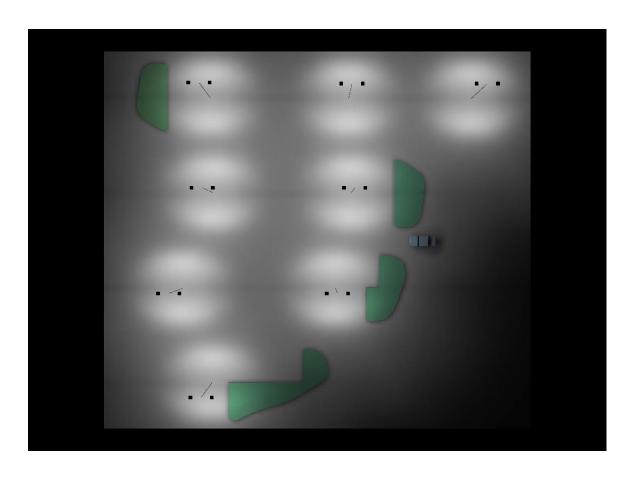
LEDs are Not a Universal Lighting Solution Yet

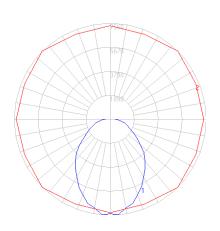

- Energy savings is "easy"
- Illumination quality is not easy
- Cost effectiveness is not easy

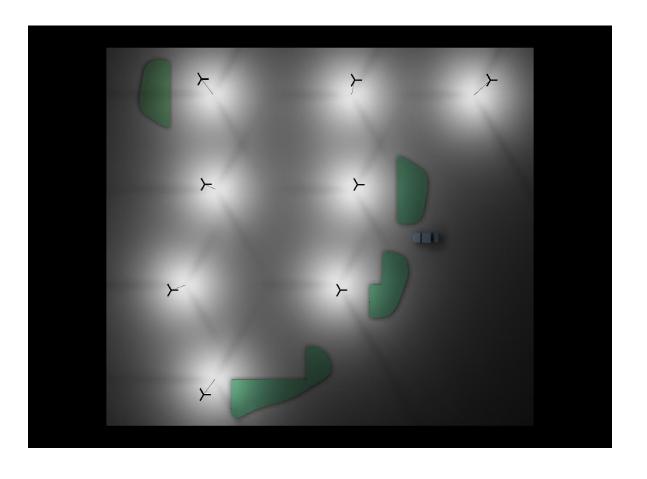
- Traditional light sources have been around for decades
- Systems and installations have been designed around them; value-engineering is complete
- LED technology still evolving at rapid pace

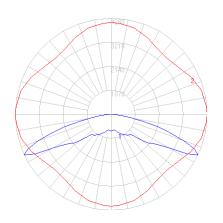

Illumination Quality – Distribution Matters!

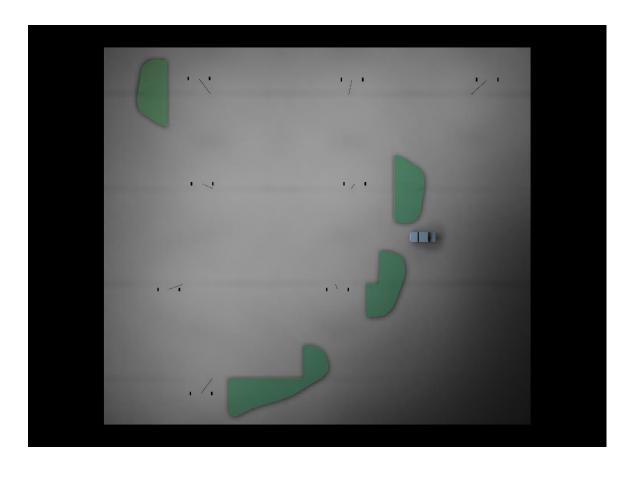

Four different parking lot products:




All roughly the same lumen output, but distributions are quite different.







Manufacturer Claims Not Always Accurate

CALiPER SSL Sample	Manufacturer Claims	CALiPER Measured	Accurate ?
MR16, 4W	130 lm, 37 lm/W "Replaces 20W halogen MR16 bulb"	129 lm, 37 lm/W 618 cd, 21° Less than average 20W halogen	YES NO
PAR30, 10W	418 lm, 38 lm/W "Replaces 50W halogen PAR30"	457 lm, 47 lm/W 2407 cd, 20° Meets average 50W halogen	YES
PAR38, 16W	600 lm, 35 lm/W "Replaces 45W halogen PAR38"	635 lm, 41 lm/W 3257 cd, 20° Exceeds average 45W halogen	YES
A19, 6W	336 lm, 60 lm/W	389 lm, 67 lm/W Meets average 40W Incandescent	YES

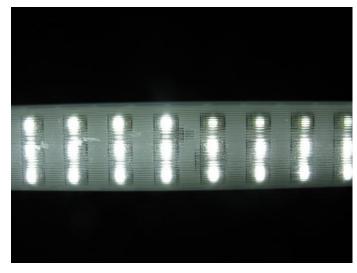
Source: DOE CALiPER Testing Program

Successful Application – U.S. Department of Labor HQ

- Integral occupancy sensor dims fixture to 10% power
- 55% installed wattage reduction in high state; 95% reduction in low
- ~80% kWh energy savings expected, incl. dimming
- Initial <u>minimum</u> horizontal illuminance increased 21%; <u>average</u> decreased 53%
- ~8 year simple payback (for retrofit), ~5 year for new
- 1:1 replacement

Before (HPS)

After (LED & Sensor)



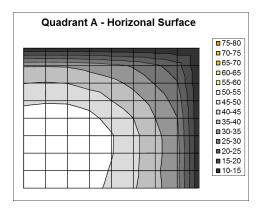
Less Successful Application – LED T-8 Replacement Products

- GATEWAY completing a laboratorybased comparison of T-8 replacement products
- Selected the best three performers identified in CALiPER testing
- Comparisons involve performance in prismatic, parabolic and basket troffers in both 2- and 3-lamp configurations
- FL benchmark lamps include "standard" T-8 (735) and a high efficiency (hi-lumen) T-8; a T-12 was also included for comparison
- Measurements performed at Lighting Design Lab in Seattle
- GATEWAY final report under preparation

Less Successful Application – LED T-8 Replacement Products cont'd

Example Results

(Prismatic 2-Lamp Troffer):


Power draw / factor

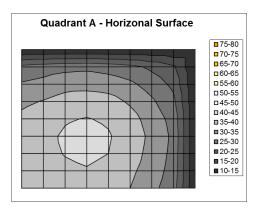
Illuminance on work plane

Price paid per lamp in this study

735 Fluorescent

57W / .98 pf

Max: 49.3 fc


Ave: 40.2 fc

Min: 22.1 fc

\$2

"Best" LED Measured

37W / .78 pf

Max: 41.4 fc

Ave: 34.1 fc

Min: 20.8 fc

~\$90 (avg of all three products)

Economics – EPAct 2005

Financial Incentives for Lighting Power Densities

- Sliding scale reductions for income taxes
- \$0.30 / sf when lighting is 0.225 W/sf
- \$0.60 / sf when lighting is 0.18 W/sf
- Applicable to covered floors
 - Open-to-sky top floors not applicable
- Extended from expiring in 2009 to December 31, 2013
- IRS Notice 2008-40 issued March 7, 2008
- Gov't Structures \$\$ → Design Team

Parking Structures → **Low-hanging fruit**

- Large footprint, but low equipment density
 - High income tax rebate with low-capital outlay

DOE SSL Website Resources

DOE Solid-State Lighting Website: www.ssl.doe.gov

CALIPER Program:

http://www1.eere.energy.gov/buildings/ssl/caliper.html

GATEWAY Program:

http://www1.eere.energy.gov/buildings/ssl/gatewaydemos.html

Municipal Solid-State Street Lighting Consortium:

http://www1.eere.energy.gov/buildings/ssl/consortium.html

Technology Fact Sheets:

http://www1.eere.energy.gov/buildings/ssl/factsheets.html

Commercial Building Energy Alliances Performance Specs:

http://www1.eere.energy.gov/buildings/alliances/technologies.html

I-35W Bridge, Minneapolis

Photo: BetaLED

Bruce Kinzey
Pacific Northwest National Laboratory
(503) 417-7564
Bruce.Kinzey[at]pnl.gov